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ABSTRACT

85124

The diocotron (or slipping stream) instability of low density
(wp<< w.) electron beams in crossed fields is considered for a cylindrical
geometry. For a simple density distribution, the normal modes of the elec-
tron beam correspond to a continuum of eigenvalues, plus two discrete
eigenvalues. Work due to Case and Dikii appears to show that the contin-
uous spectrum is not important in stability studies of this type. The condi-
tion for stability considering the discrete modes only is derived; under
suitable geometrical and electrical conditions, it is shown that these modes
can be stable. The analogy between the electromagnetic problem considered
here and the problem of the stability of an ideal rotating fluid is discussed.
It is shown that stability conditions derived for the latter problem depend
on the possibility of axial perturbations; what this implies for the electron
beam problem is briefly discussed.
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INTRODUCTION

The Diocotron (or Slipping Stream) instability has been known for
some time,*’ “» 7> * and it forms the basis of the small-signal theory of the
crossed field microwave magnetron. For one reason or another, however,
it appears that this instability has not been extensively studied in a cylin-
drical geometry. This situation, although somewhat surprising at first
sight (since magnetrons are generally cylindrical) may possibly be ex-
plained by the observation that the annulus in which the electron beam
travels frequently has a rather small aspect ratio and can therefore be
approximately treated as planar. Whatever the situation in this regard,
certain phenomena relevant to thick beams in cylindrical geometries are
not adequately treated by the planar theory. Thus, it is known from the
planar theory of thick electron beams that such beams are always unstable
to perturbations having sufficiently long wavelengths. However, it has been
pointed out® that when a thick beam is moving around a circular (or other
closed) path, that an upper limit to the wavelength of permissible distur-
bances is approximately given by the perimeter of the path. Thus, the
question arises as to whether an electron beam moving in a circular path
in crossed electric and magnetic fields can be stabilized by being made
sufficiently thick. It is the purpose of this note to give a quantitative evalua-
tion of this effect.

BASIC FORMULATION

We consider the geometry illustrated in Fig. 1. Two concentric,
perfectly conducting cylinders of radii a and d are aligned along the z-axis.
A constant uniform magnetic field of strength B acts in the z-direction. In
the basic (unperturbed) state the space between the electrodes is filled with
electrons having a density ny(r) where r is the distance from the axis.
Following Gould's analysis of the planar case, we suppose that the electron
density is sufficiently low relative to the magnetic field intensity that
Wp<« Wc, the symbols referring, respectively, to the plasma and cyclotron
frequencies. The unperturbed state is then defined by a radial electric field
Eo(r) which is related to the electron density by Gauss' law:

1 d .
?a—r—(rEo)z € (1)

The electric charge on the inner electrode (per unit axial length) is just

Q = 27a¢E_(a) (2)
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Fig. 1 Illustrates the basic geometry considered in the text.
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Q can be equal in magnitude (but opposite in sign) to the total charge in the
electron cloud, but it can also have any other value. Each value of Q
corresponds to a definite value of the potential between the inner and outer
cylinders. The electrons move (in the unperturbed state) in the azimuthal
direction with velocity v, = —EO/B.

We consider next the perturbed motions of this system. To start
with, we consider only two-dimensional perturbations, but we will give a
brief discussion of three-dimensional perturbations at a later stage. Once
again following Gould, we apply the quasi-static approximation and assume
that the electric field due to any perturbation can be treated as irrotational.
We anticipate the result that the frequencies of interest in this study are on
the order of W /wc, that is much less than w_ and hence, a fortiori, much
less than W¢. This observation justifies taking for the electronic equation
of motion:

Er:—vB; Eg'zuB (3)

where (u,v) and E,., Eg are, respectively, the radial and azimuthal com-
ponents of the velocity and electric fields. The quasi-static assumption
implies first the existence of a potential ¢:

_ _9¢ . __1 9%
E -5y Bp=-1 o9 (%)
and second, from Eq. (3);
1 d 1 dv _ .. _
T ar Wiy gg divy=0 ©)

In addition to the above, we have the equation of conservation for the elec-
trons:

-g%l +ndiVZ+ZPVn:O . (6)

In view of Eq. (5), the middle term in Eq. (6) vanishes: thus

% Br 9,0 0 ° ()

This condition states simply that the electron density of any small
parcel is conserved following the motion, even though the density varies
spatially or temporally.

We now linearize by assuming




o
1

¢, (r) + ¢(r) exp {i(26 - wt}

n_ (r) + n(r) exp {i(ﬁ() - wt}

(8)

where, as usual, the physical quantities are the real parts of the complex
quantities appearing in Eq. (8). On linearization, Eq. (7) yields:

2¢ dno
- = .29 9
n{w Qvo/r) By dr (9)
Substituting Eq. (9) in Poisson's equation yields, finally:
2 dn
1 d , d¢ i _-e (¢ 0
@-tvo/M iy T ® T B W (10)

Up to this point, we have left the choice of zero order profile entirely
free. We shall now make a choice governed by considerations of convenience.
We assume:

rio 0 (@a=r<b;c<r=d)

(11)

i
2

n
o

(b=r=c)

The purpose of this choice is that it makes dn_/dr = 0 in each of three re-
gions. In the interior of these regions, then, Eq. (10) reduces to the much
simpler form:

2
1 4 d 4 _
T dr (rdr - rz $=0 (12)

and we also have, from Eq. (9), n = 0. Thus, the perturbation we have to
deal with is much simplified and involves (as noted by Gould) no perturba-
tion charge density at all in the interior of the electron cloud, but merely an
accumulation at each of the two free surfaces. This observation leads us to
consider the conditions to be applied across the free surfaces r = b and

r = ¢c. In the first place, we must clearly assume the perturbation potential
to be continuous across these surfaces. For obtaining the change in d¢/dr
across the surface, various methods have been proposed, but the one that
seems simplest is as follows: we merely integrate Eq. (10) for a short
distance fromr =b -8 tor =b + 0 and let 8 = 0. The bracket containg W
has virtually a constant value in this range and can therefore be taken

out of the integration. On the right hand side, dno/dr can be treated as a
delta function, while ¢ (and f ¢dr), being continuous, give no contribution
to an integral over a vanishing range. Putting these facts together yields:

2
!Zvo(b))zd_(b - d¢ s_ -wp 2 6(b) (13)
b - b

(@ - —5 ar ar ®_

b+




The specification of the problem is now completed by noting that the
boundary conditions appropriate to conducting electrodes at r =a and r = d
are simply ¢(a) = ¢(d) = 0.

At this stage, it would appear that the problem is completely solved,
at least in principle. We have only to write down the eigenfunctions which
satisfy Eq. (12) in the three regions, apply the boundary and jump conditions
and derive the characteristic equation. In the present case, the character-
istic equation will have the form of a polynomial in w, the degree of the
polynomial corresponding to the number of surfaces at which ng(r) is dis-
continuous. This can also be explained by noting that a surface wave can
propagate at each discontinuity, so that clearly the number of such waves
is just the number of such surfaces. For the unperturbed density profile
described in Eq. (11), this number is just two. Since the coefficients of
the polynomial are all real, the roots will be either real, or will occur
in complex conjugate pairs. In the latter case, obviously, one root cor-
responds to a growing (unstable) wave and the other to an evanescent
(damped) wave. Therefore, stability can only be claimed when all the roots
of the characteristic polynomial are real, in which case each surface wave
can propagate at constant amplitude.

It is clear, however, that the method described above cannot, as it
stands, be used to make any firm statement about stability. This is because
such a statement can only be made when we have obtained a complete set
of normal modes; in the present case, we have a very restricted set cor-
responding in number to the number of surface discontinuities present in
the unperturbed state. That this set is not complete is easily seen by ob-
serving that no initial condition involving a perturbation in the charge density
can be described by them. Now an analogous problem has been extensively
treated by Case®s 7 and Dikii8 in connection with the problem of aerodynamic
shear flow. This problem is mathematically identical to the slipping elec-
tron stream problem provided as assumed here, W, << w.. Case points out
that when dno/dr = 0, the solution of Eq. (10) can be written:

2 v
%d_i(rg_f)-izr—zwAa(w- -2 (14)

where A is an arbitrary constant. The eigenfunctions corresponding to Eq.
(14) give rise to a continuous spectrum of real eigenvalues, the spectrum
covering all angular frequencies present in the unperturbed state. Each
eigenfunction corresponds to a delta function perturbation of charge density
at what might be called the corresponding resonant layer. Case shows, in
a particular case, by using the method of the Laplace transform, that per-
turbations involving these eigenfunctions decay at long times like various
algebraic powers of the time. Therefore, the stability will depend only
upon the behaviour of the discrete normal modes, that is those picked out
by the previous discussion. This proof is given in more general form by
Dikii, and it is upon the validity of this proof that our work, together with
that of Gould, and a large amount of earlier work in the field of aerodynamic
shear flows, depends. Among the aerodynamic work, we particularly note
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the work of Goldstein? who considers a profile having no less than five
discontinuities, and hence is forced to consider the roots of a quintic poly-
nomial. This work points out that, if one is willing to undertake a large
amount of tedious work, an arbitrary continuous profile of (say) electron
density, can be satisfactorily approximated by a small number of segments
in each of which the electron density has a different constant value.

Before leaving this point, we should perhaps insert a caution along
the following lines: according to Dikii, the results obtained by a stability
analysis of the flow of an inviscid fluid do in fact agree with the results ob-
tained when a small viscosity is allowed, and then made to tend to zero.

This is an important point, since the eigenfunctions corresponding to the
continuous spectrum have discontinuous derivatives; these jumps cannot rep-
resent physical fact in a real medium. To smooth out the jumps, it is
necessary to introduce more physics, and in the fluid case, this physics is
just the viscosity. Dikii's observation is therefore of importance when
interpreting the ideal stability analysis. In our medium, the jumps in the
eigenfunctions are also not physically acceptable, however, smoothing them
out is obviously not to be accomplished by the simple addition of a diffusivity
but would require consideration of the electron dynamics by means of a
velocity distribution function. We therefore make the assumption (which
seems plausible but no more than that) that Dikii's result is independent

of the details of the physical process whose neglect resulted in the discon-
tinuous eigenfunctions.

ESTABLISHMENT OF THE STABILITY CONDITION

No further difficulty of a theoretical nature remains at this stage,
and we can proceed directly to write down the eigenfunctions, the disper-
sion relation, and the condition that both the roots of the latter should be
real. The first step is to note the zero order potential and electric field
distribution that are implied by the distribution of charge given in Eq. (11).
Taking the conductor at r = a to be at zero potential, we find in region 1:

E = Qf27e r
(o] (o)
(15)
r

Q ﬂn_

¢o:'21re a
(6]

In region 2 we find:

E - Q _Neb r b
o 2T € 1T 2 € P T T
o o

(16)

2 2
_ Q r Neb r by
% = e P 3t Tz ol g
o o b



In region 3 we find:

E = [Q - Ne7r(c2 - bz)] /2m€e r
° ° (17)
_ Q r Ne 2 2 2 r 2 r
d)o_—fﬁg ﬂ_ng-i-zgoz(c -b) + 2c ﬂnE--Zb ﬁngg

The potential of the outer conductor, at r = d is related to the charge on the
inner conductor by:

_ Q d Ne 2 .2 2 d _ .2 d
¢O(d)——-27r—€()— ﬂn -a— + Z?Oi(c -b )+2C QI’IE 2b ﬁnB- § (18)

The solutions of Eq. (12) are the simple functions riﬂ. We there-
fore take for the eigenfunction in region 2:

- ﬁ b

6 = prl + vy (0 = 1) (19)

v

where 3 and y are arbitrary constants. The eigenfunction appropriate to
region 1 must vanish at r = a, and be continuous with Eq. (19) at r = b.
Thus

o = (vl 1 oy 20 o a2y 2L C 20 -1 8 (20)

The eigenfunction appropriate to region 3 must vanish at r = d, and be con-
tinuous with Eq. (19) at r = ¢. Thus

o = (gl 4 oy (@l - £2ly (%0 _ 2y -l od (21)

The condition Eq. (13) on the jump in d¢/dr at r = b, together with the
similar one at r = ¢ now yield:

2 +—2 ) @l +y) = g+ 2L - 2% (22)
2TNeb
2

2t +E}%’-’~) R Y R R A NCCUSU I
eC C

* The mode { = 0 has no non-trivial solution. This can be seen as follows:
Eq.(13) shows that for this mode d¢/dr as well as ¢ is continuous at r = b, c.
The eigenfunction ¢ = A + B In r is therefore valid in all three regions. If
¢(a) = ¢(d) = 0, A =B =0.



In these % uations, and hence forward, the unit of frequency has been taken
to be W We, or Ne/EOB. The dispersion relation is now obtained by writing
down thé condition for consistency of these two linear homogeneous equa-

tions in B and v.
2

2
~a0® @0 - 2%y 420 [;z @2t 2% g -2 -2 +2y
C TNeb c
2 2
+ 22l 2% (c“-b”)b‘”c‘zf] +[f R R G
TNeb c TNec
(24)
2
2 - _
;—N—£—Q-§-(c2ﬁ-azﬂ) (@222l g (1B Qg2 20,2020y 2
eb C mNec

20 20, @20 _ 20y 420 20, -20 -2 ]: 0

+ (c -b"7) (d
The condition for reality of the roots of this quadratic in W which is also the
condition for stability of the distribution described is now easily extracted.

After some reduction, the condition for stability can be written as:

2 20 2¢
Q b 20 29 20 29 2¢ . 2¢., ,a"*d ]
-0 (1 + )(1-—2)(d —a“ )y + 2@ +a" ) (c" b )(——T + 1)
[ mNeb c bzﬂc [ (25)

4 (@20 202,28 2002 _

DEDUCTIONS FROM THE STABILITY CONDITION

Several simple deductions are possible from the stability condition,
Eq. (25). Firstly, it is important to note that the condition Eq. (25) can
always be fulfilled for any geometry by having a sufficiently large positive
or negative value of Q. Alternatively, the condition for instability will only
be satisfied by a definite limited range of values of Q (or of the unperturbed

potential between the conductors).

Secondly, we note that if either d = ¢, or b = a, Eq. (25) has the
form of a perfect square, guaranteeing the satisfaction of the stability con-
dition. The physical meaning of this is simply that if either edge of the
beam is in contact with a fixed conductor, the wave that would normally be
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associated with that edge can now no longer exist. Alternatively, the dis-
persion relation for this case, if derived ab initio, is now simply a linear
equation in W, and therefore incapable of having complex roots. In such a’
case, the system is capable of only one real frequency of oscillation for any

£.

A simple limiting case of some interest involves letting d—>
(removing the outer conducting cylinder) and setting Q = 7"Ne(c 219 so that
the positive charge on the inner cylinder equals the negative charge in the
electron cloud. This implies, from Eq. (16), that E, vanishes for r = c.
The condition for stability in these circumstances becomes:

2

2 29 2 2y 2y
a b b a 2 _ 0 (26)
-Q(C——-l)+2———— (1+—-——)] -4-—2— (I-T) =
[ -z 21 2l 2l pL
For simplicity we restrict our attention to the mode { = 1:
2 .2 2 2 2
(c“-b%) (2bc-a” -c?) (-2bc-a"-c%) = 0 (27)

2
The factor (cz-bz) is always = 0 and may be dropped. The last factor is
always negative. The stability condition is thus finally:

a2 + c2 = 2 bc (28)

Regions of stability for this case for the mode { = 1 and a few higher modes
are shown in Fig. 2. In this case, the cylinder at r = a is at a positive
potential relative to "infinity''.

Another limiting case of greater interest for laboratory purposes
is reached by setting a = 0, that is, removing the inner conductor. In
addition, we must set Q = 0 for consistency. In these circumstances, the
stability condition reduces to:

2

2 2
[-ﬁ (1 -2y a?l 2020 o2t -bzﬁ] ap?l 2L (@2 2% 20 (29)
C

For f =1 this condition reduces to:
2
(dZ_CZ 2,2 .2

) (c-b7) =0 (30)
which condition is satisfied for all values of the parameters. This mode is
therefore always stable. For { = 2 the condition is:

(c®-b%)? [cz(cz " b2)2-4b2d4] > 0 (31)
or, more simply:
2
c:(c2 + bz) > 2bd (32)




i.0 T I T T T T | T |

9 L lie l=5  [=4 i
.8 -
7 F _

6 | UNSTABLE

b/c

5 | i
4 [~ STABLE de oo :
3| Q= wNe(c=b%) |
2 b 4
L i
0 1 | I 1 | R N |

o 1 .2 3 4 5 .6 1 8 9 10

a/c

Fig. 2 For the case d>=, Q = ﬂNe(cz—bZ) this figure shows the
geometric parameters governing the slipping stream instability.
Since a < b = ¢ only a triangle on this figure represents possible
geometries. It can be seen that the ¢ = 1 mode is the most
important. Note that the configuration is stable when a = 0,
c = 2b, and that is unstable whenever b = c.
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Regions of stability for this case for the mode ¢ = 2 and a few higher modes
are shown in Fig. 3.

The stability condition for the plane geometry illustrated in Fig. 4
can be derived from Eq. (25) by letting a, b, ¢, d all tend to infinity while
keeping the differences between these lengths constant. However, in
order to maintain a finite wavelength for the perturbation, it is necessary
to let £ tend to infinity as well, keeping k = { /a (the wave number of the
perturbation in the stream direction) finite. In this way, one obtains a re-
lation involving exponentials. It must also be observed that in this limit,
one must replace Q by 2 7oa, where ¢ is the charge density on the inner
conductor. Then, in the limit, the term Q/TNeb® = 2¢ga/NebZ =0, and the
actual value of 0 becomes irrelevant. This makes sense, since the electric
fields in regions 1 and 3 for the plane case are constants. Without affecting
the stability question, either field can be removed by transferring to a set
of coordinates moving with appropriate velocity parallel to the beam. The
difference between the two electric fields is important, however, and
represents the velocity change across the beam. This velocity change can
be shown to be equal to wpz Wc multiplied by the beam thickness. An im-
portant observation is that the plane case cannot be stabilized merely by
applying a large positive or negative potential between the plates. We shall
not consider this case further, as it has been rather thoroughly treated in
the microwave and aerodynamic literature.

It is known from the plane case that thin beams are most unstable,
and this leads us to consider the case (l-b/c) < 1. If we setb =c, itis
easily seen that the expression on the left hand side of Eq. (25) vanishes
identically, showing that the case b = ¢ is marginally stable. More detailed
study of this case is then necessary. One finds that for b/c slightly less
than unity, the sign of the expression is opposite to the sign of Q or, from
Eq. (18), the same as the sign of the potential of the outer cylinder. Thus,
if Q >0, the thin beam is unstable, whereas if Q < 0, it is stable. For
Q = 0, detailed study shows that the mode { = 1 may or may not be unstable,
while the higher modes are always unstable.

This completes the list of simple deductions from the relation Eq.
(25). In general, any case can of course be calculated directly from this
relation. In Table I we list, by way of example, some cases selected more
or less at random giving for each case and for each mode the two values of
Q (normalized to Ne7 {c 2 - bZ), the amount of charge per unit axial length
in the electron cloud) between which there is instability. We also list the
two corresponding values of the potential (normalized to Ne(c2- bz)/Zeo)
between the inner and outer cylinders between which there is instability.
The cases listed allow one to see the effect of varying each of the geometrical
quantities a, b, ¢ and d in turn, holding the others constant. For { - <,
it can be seen from Eq. (25) that the two limiting values of Q converge
after normalization to -b2/(c2-b2); this value and the corresponding limit-
ing potential is also listed for each case.

-11-
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Fig. 3 For the case a = 0, Q = 0 this figure shows the geometric
parameters governing the slipping stream instability. . Since
b < ¢ = d only a triangle on this figure represents possible
geometries. The £ = 1 mode cannot lead to instability in this
geometry; the £ = 2 mode is therefore the most important. Note
that when b = 0 the configuration is stable for all values of ¢> 0,
and that when b = ¢ it is always unstable.
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Fig. 4 [Illustrates the manner in which the planar problem can be
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Table 1.

TABLE 1

a/d b/d c/d 2 Q Q, 9, ¢,

1 2 3 1 2.75 .10 -4.95 1.15
2 1.17 -.02 -1.33 1.42
3 .43 -.13 .39 1.68
4 .06 -.22 1.24 1.89
w --8 3.22

2 4 6 1 1.96 .04 -2.46 62
2 1.00 -. 04 - .93 75
3 .39 -. 14 .05 .91
4 .05 -.23 . 60 1.05
i -.8 1.97

2 4 8 1 24 -. 01 11 51
2 .06 -. 06 .39 .59
3 -.05 - 11 58 66
4 -.12 -. 14 68 72
w0 -.33 1.03

2 6 8 1 2.96 02 -4, 41 32
2 1.81 -.12 -2.56 55
3 .98 -.24 -1.22 .74
4 .43 -.34 - .35 .90
o -1.28 2.42

4 6 8 1 1.95 -. 15 -1.44 49
2 1.41 -. 20 - .94 54
3 .84 -.27 - .42 . 60
4 39 -.35 0 68
w -1.28 1.53

This table lists for various values of the ratios a/d, b/d and
c/d, and for various mode numbers, the range of charges on
the inner cylinder, or of potentials across the two conducting
cylinders, between which instability exists. For fixed geome-
try, the upper and lower potentials tend, with increasing mode
number, to the same limit; this limit izs s%lown as f = ©. The
unit of charge per unit length is Ne#(c“-b“), the unit of poten-

tial is 1 -1, 2,2
—?:Neeo (c-b7).
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COUETTE FLOW ANALOGY AND AXIAL PERTURBATIONS

An exact analogy exists between the two-dimensional electromagnetic
problem discussed in this paper, and the two-dimensional motion of an incom-
pressible frictionless fluid, the velocity fields being the same in each case.
The incompressibility of the fluid flow field is guaranteed by Eq. (5). In the
electromagnetic case, the electron density n is related to the potential ¢ by
Poisson's equation:

-n/e_= V%4 (33)
The conservation of charge then gives, from Eq. (7)

D(V%4) Dt = 0 (34)
In the fluid case, ¢ is related to the velocity components by Eq. (3) and Eq.

(4), and therefore has the character of a stream function. The vorticity,
¢, is then given by

2 2
0 o 2
¢ = curly < —78x¢ + ——28Y¢ = V% (35)

The vorticity of a fluid element is conserved, following the motion of a
perfect incompressible fluid. Hence

D(V24)/Dt = 0 (36)

Finally, at a solid boundary the normal component of velocity vanishes,
corresponding exactly (through the relation E + v x B = 0) to the vanishing
of the tangential electric field at a perfect conductor.

The purpose of bringing out the above analogy is to be able to make
use of the substantial body of work10» 11 dealing with the stability of two,
dimensional plane shear flows and flows between rotating cylinders. Indeed,
reference has already been made to this work in connection with the problem
of the continuous spectrum of eigenvalues. The former case we shall not
discuss in this paper. For the latter case, a well known result of Rayleighl
states that a rotating fluid is stable only if

d 2

This result is obtained from simple considerations of energy and angular
momentum. The analogous electromagnetic condition would be

-asl; (r Eo)2 =0 (38)
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In regions 1 and 3 (Egs. (15) and (17)) this condition is marginally fulfilled.
In region 2 it reduces to

E =0 (39)

This condition will be satisfied at r = b if:
Q =< 0 (40)

We have in the foregoing seen that if Q is sufficiently large and positive,
any geometry can be stabilized. What is the meaning of this apparent
paradox?

The result (Eq. (37)) appears to be concerned only with conditions
in the plane. In reality, however, it depends for its validity upon the
possibility of an interchange which can take place only with motions in the
axial direction. Formally then, at least, it is hardly surprising that an
analysis neglecting motion in this direction should arrive at results which
are quite different from Eq. (37). We still have the possibility, however,
that any stability predicted on the basis of Eq. (25) in violation of Eq. (37)
may be spurious since axial motion may in fact allow interchanges to take
place.

We shall confine ourselves in this regard to a few observations.
In the first place, when three-dimensional motion are considered, the
analogy discussed breaks down. This is seen most simply as follows:
E +yx B =0implies E,= 0 and hence no axial fields. But the equation
of motion of the fluid is governed simply by the axial pressure gradient.
To obtain axial motions in the elctromagnetic problem, we are obliged
to introduce more physics, and in particular we must write an equation
governing the desired axial motion. Such an equation should bring in the
effects of finite electron 'temperature' and mass. More correctly, one
should use the Vlasov system of equations to obtain a kinetic description of
the situation.

At present, effects of this type and their implications are not fully
understood. It is clear, however, that a high electron temperature,
corresponding to easy motion along field lines, will have a strong tendency
to nullify electric fields in the z-direction, and hence to validate our two-
dimensional results.

CONCLUDING REMARKS

It has been demonstrated that, when axial effects can be ignored,
proper selection of dimensions and potentials can ensure stability against
the diocotron effect in cylindrical geometries,
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